الباب الثاني عشر معرفة خط نصف النهار

وهو سمت الجنوب

قال إذا أردت أن تعرف سمت الجنوب وهو خط نصف النهار في كل بلد تريد في أي وقت شئت من أوقات السنة فإن لم يكن لك موضع الشمس معلوماً فاعمد إلى موضع منكشف الأفق سلس الوجه موزون السطح غير مائل فأدر فيه دائرة بأي قدر شئت واثبت في مركز الدائرة عوداً رقيقاً محدود الرأس مستوياً لا اعوجاج له وأحسن أقداره أن يكون طوله مثل ربع قطر الدائرة وقدره بالمقدار من أربع نواحي الدائرة إلى طرف العود ليصبح قيامه على المركز ثم ارصد الظل في أول النهار وهو مستطيل فلا يزال يقصر حتى إذا انتهى إلى محيط الدائرة وكاد أن يدخل فتعلم على موضعه من محيط الدائرة نقطة تكون علامة على طرف الظل ثم أمهل الظل إلى أن يجوز نصف النهار ويبتدئ الظل بالزيادة حتى إذا انتهى إلى محيط الدائرة وكاد أن يخرج فتعلم على طرف موضعه في محيط الدائرة نقطة ثانية تكون علامة على طرف الظل ثم اقسم القوس التي بين النقطتين بنصفين وتعلم على موضع نصف القوس نقطة وأخرج من هذه النقطة خطاً مستقيماً يجوز على مركز الدائرة إلى الجانب الآخر من المحيط وأنفذه كم شئت وصنعة ذلك أن تجعل حرف المسطرة على النقطة التي في نصف القوس وعلى المركز وتخط خطاً يجوز على النقطة وعلى المركز جميعاً إلى محيط الدائرة من الجانب الآخر فيكون هذا الخط هو خط نصف النهار أبداً فمتى وقع ظل العود الذي في المركز على هذا الخط فهو وقت انتصاف النهار طال الظل أم قصر وهذا الخط هو سمت ما بين الجنوب والشمال ثم ربع الدائرة بخط آخر يجوز على مركز الدائرة وعلى زوايا قائمة وتنقسم الدائرة بهذين الخطين أرباعاً متساوية ويكون هذا الخط سمت ما بين المشرق والمغرب ثم ارسم على أطراف الخطوط جهات الأفق أعني المغرب والمشرق والشمال والجنوب. وكلما قربت الشمس من نقطة المنقلب أي المنقلبين كان أصح الرصد لإبطاء حركة الشمس فيما بين الرصدين في الميل أعني رصدي الظل. ومعلوم أن وقت انتصاف النهار غير محدود بالحقيقة لسرعة مر الشمس في الميل في فلك نصف النهار ولكنه يعرف وقت انتصاف النهار أو أقرب الأوقات إليه. وهذا مثال الدائرة المذكورة إن شاء الله تعالى.

قال تخط دائرة على مركزه وتثبت العمود الموري في موضع نقطة ه وترسم على موضع طرف الظل الذي قبل انتصاف النهار نقطة ا وعلى موضع طرفه الذي بعد انتصاف النهار علامة ب وتقسم قوس ا ب بنصفين على علامة ج وتخرج خط ج إلى علامة د فخط ج ه د هو خط نصف النهار ونقطة د هي جهة الجنوب ونقطة ج هي جهة الشمال ثم تقسم قوس ج ا د بنصفين على نقطة ط وتجر على نقطتي ط ه خطاً يخرج إلى نقطة ز جهة المشرق ونقطة ط جهة المغرب فكلما وقع ظل العمود الموري على خط هج كان وقت انتصاف النهار أبداً. وأما إذا كان لك موضع الشمس معلوماً فاعرف سمت أي الارتفاعات أردت في بعض أوقات النهار وارصد الارتفاع المفروض حتى إذا صار الارتفاع مثله فتعلم على ظل الموري في محيط الدائرة علامة تكون على وسط عرض ظل العمود الموري ثم اقسم الربع التي تقع فيه هذه النقطة من الدائرة بتسعين جزءاً واعدد من تلك النقطة إلى خلاف جهة سمت ذلك الارتفاع بقدر سمت الارتفاع فما وقع عليه من تلك الأقسام فهو نقطة المشرق أو المغرب بحسب ما عملت عليه من الوقت في الارتفاع إما قبل نصف النهار وإما بعده فاخرج من تلك العلامة خطاً يجوز على مركز الدائرة وربع عليه الدائرة بخط آخر يجوز على المركز على زوايا قائمة فتعرف حينئذ خط نصف النهار بهذا الخط وخط المشرق والمغرب بالخط الذي قبله. وكذلك إن كانت هذه الدائرة ظاهرة الأفق عند طلوع الشمس أو غروبها كانت نقطة المشرق أو المغرب معلومة من قبل معرفة سمت طلوع جزء الشمس أو مغيبه من دائرة الأفق التي قد جعلنا رسمها ا ب ج د وإن شئت أن تعرف خط ما بين المشرق والمغرب بجهة أخرى ثم تعرف به خط ما بين الشمال والجنوب وهي بمعرفة الارتفاع الذي لا ميل لسمته عن مطلع الاعتدال أو مغربه ولا يتهيأ ذلك إلا إذا كانت الشمس في البروج الشمالية التي هي من أول الحمل إلى آخر السنبلة فقط. ومعرفة هذا الارتفاع يكون بأن تعرف موضع الشمس من فلك البروج في اليوم الذي تريد وارتفاعها في وقت انتصاف النهار من ذلك اليوم الذي عملت عليه ثم اعرف وتر هذا الارتفاع وتر ما يبقى لتمامه إلى ص ثم اعرف سمت مطلع الشمس أو مغيبها بموضعه من فلك البروج في وقت انتصاف النهار الذي عملت عليه مهو أبداً شمالي على ما شرطنا ثم خذ وتر هذا السمت واضربه في وتر الارتفاع فما بلغ فاقسمه على وتر السمت ووتر تمام الارتفاع جميعاً مجموعين فما حصل فقوسه فما بلغت القوس فهو الارتفاع الذي لا ميل لسمته. فإذا عرفت هذا الارتفاع فارصد الشمس حتى إذا صار الارتفاع مثل ذلك الارتفاع فتعلم على وسط ظل الموري من محيط الدائرة نقطة تكون نقطة المشرق أو المغرب بحسب الوقت الذي تقيس فيه وهو مشرق الاعتدال أو مغربه فربع الدائرة على هذه النقطة بخطين متقاطعين على المركز على الزوايا القائمة فتعلم بها جهات الأفق.

ونجعل لذلك مثالاً ونصيره في الإقليم الرابع حيث يكون ارتفاع القطب لو كب ونفرض موضع الشمس في أول السرطان فيكون لذلك ارتفاع الشمس في وقت انتصاف النهار عز يج وارتفاعها في وقت انتصاف الليل عن أفق الشمال ل ج ومعلوم أنه مثل ارتفاع الجزء المقابل له فوق الأرض في خط وسط السماء الذي هو ل ج. ونعلم ذلك أيضاً بوجه آخر وجهة أخرى وهي بأن نضعف ارتفاع أول الحمل في الإقليم المذكور فما بلغ نقصنا منها ارتفاع أول السرطان في وسط السماء وبين ارتفاع أول الحمل في وسط السماء في هذا الإقليم نج لح وضعف ذلك قز يو فإذا نقص من ذلك عز يج بقي ارتفاعها في وسط السماء من تحت الأرض ل ج وسمت أول السرطان عند طلوعه في هذا الإقليم نبين أنه يكون إلى ناحية الشمال من مشرق الحمل ل ه جزءاً وإذ ذلك على ما وصفنا نرسم دائرة لوسط السماء عليها ا ب ل على مركزها ه وقطر ل ب وليكن قطر ل ب نصف الأفق ولتكن النقطة ا موضع سمت الرؤوس ونصل نقطة ا بنقطة ه فتكون قوس ب ا ربع الدائرة التي بين سمت الرؤوس والأفق وتكون نقطة ه هي موضع مطلع أول الحمل ونقطة ج موضع مطلع أول السرطان وذلك أن ه ب نصف الأفق الجنوبي وخط ه ل خط نصف الأفق الشمالي وخط ه ا خط ربع الدائرة التي يجوز على نقطة سمت الرؤوس ومطلع أول الحمل. وترسم على نقطة أول السرطان من دائرة و وسط السماء نقطة ز فقوس ب ز ارتفاع الشمس في نصف النهار وقوس ز أبعدها عن سمت الرؤوس الذي هم تمام الارتفاع إلى ربع الدائرة وترسم على ارتفاع الشمس نصف الليل نقطة ط فيكون قوس ط ل قوس الارتفاع نصف الليل من تحت الأرض وتخرج خط ط ز ويجوز على نقطة ج التي يطلع منها أول السرطان والموضع المشترك من خط ط ز وخط ه ا هو الموضع الذي إذا ارتفعت الشمس إليه صارت على سمت ه التي يطلع منها أول الحمل ولذلك لا يكون لها حينئذ ميل عن سمت مطلع الاعتدال إذا كان الخط الذي من سمت الرؤوس يجوز على موضع الشمس وعلى نقطة ه من الأفق فترسم على موضع الشمس من خط ه ا علامة م. فبين هو في هذا الشكل أن خط ه ج هو خط سمت مطلع أول السرطان وهو وتر السمت المنصف. وأيضاً تخرج من نقطة ز عموداً إلى خط ه ب موازياً لخط ه ا وهو عمود ز ك وهو وتر الارتفاع الذي لا ميل لسمته إذ كان خط ه م مساوياً لعمود د ح الذي يظهر أنه وتر قوس ب د التي هي مقدار هذا الارتفاع المطلوب إذا كانت دائرة ا ب ل مارة على سمت الرؤوس ونقطة أول السرطان فلأن مثلث ز ك ج القائم الزاوية قد صار معلوم الأضلاع وهو مناسب لمثلث م ه ح الصغير إذا كانت زاوية م ه ج مساوية لزاوية ز ك ه وزاوية ج م ه مساوية لزاوية ك ز ج وزاوية ك ز ج مشتركة للمثلثتين فلذلك تكون نسبة خط ز ك إلى خط ك ج مثل خط م ه إلى خط ه ج. وأيضاً فإن نسبة خط ه ج إلى خط ج ك كنسبة م ه إلى ك ز وهي أيضاً نسبة خط ج م إلى خط ج ز فإذا ألقينا من خط ك ز نسبة خط ج م إلى خط ج ز بقيت لنا نسبة خط ه م إلى خط ك ز وكذلك هو إذا أخذنا من خط ك ز بقدر خط ج ه من خط ج ك صارت لنا نسبة ه م إلى ك ز. حساب ذلك ان نضرب خط ه ج الذي قد ظهر أنه ل جزءً في خط ك ز الذي هو نح لا وهو وتر قوس ب ز المنصف فيبلغ ألف وسبعمائة وخمسة وخمسين جزءاً ونصف جزء وخط ك ه الذي هو وتر تمام الارتفاع يكون يج يز فخط ه ج و ه ك مجموعين يكونان مج يز وهو خط ك ج كله فإذا قسمنا ذلك على خط ك ج حصل م لج وهو مقدار خط ه م المطلوب وخط د ح مثله ولذلك يكون قوس د ب اثنين وأربعين جزءاً واثنتين وثلثين دقيقة وهي الارتفاع الذي لا ميل لسمته وذلك ما أردنا أن نبين إن شاء الله.